A solution of a partial differential equation for the case of a point source of unit strength within the region under examination. The Green's function is an important mathematical tool that has application in many areas of theoretical physics including mechanics, electromagnetism, acoustics, solid-state physics, thermal physics, and the theory of elementary particles.
The underlying physics in each of these areas is generally described by some linear partial differential equation which relates the physical variable of interest (electrostatic potential or pressure amplitude in a sound wave, for example) to a source function. For present purposes the source may be regarded as an independent entity, although in some applications (for example, particle physics) this view masks an inherent nonlinearity. The source may be physically located within the region of interest, it may be simulated by certain boundary conditions on the surface of that region, or it may consist of both possibilities. A Green's function is a solution to the relevant partial differential equation for the particular case of a point source of unit strength in the interior of the region and some designated boundary condition on the surface of the region. Solutions to the partial differential equation for a general source function and appropriate boundary condition can then be written in terms of certain volume and surface integrals of the Green's function.
- 词性: noun
- 行业/领域: 科学
- 类别 普通科学
- Company: McGraw-Hill
创建者
- Francisb
- 100% positive feedback